P 1-123

Effect of smart artificial leg on gait with transfemoral amputee

Jun-Hwan Choi^{3*}, Jong-Hyun Park³, Su-Bin Kim³, Gwang-Sik Choi², Sungjae Kang⁴, Jeicheong Ryu⁴, Kang Hee Cho^{1,2†}

Chungnam National University, Department of Rehabilitation Medicine, School of Medicine¹, Chungnam National University Hospital, Department of Rehabilitation Medicine², Chungnam National University, Institute of Biomechanical Engineering³, Korea Orthopedics and Rehabilitation, Research Center⁴

Objective

The purpose of this study was to evaluate the gait abilities by applying a Smart artificial $leg(power leg \mathbb{R})$ to the bilateral femoral amputee.

Subject & Methods

The subject was 48-year-old man who had weared Hydraulic artificial leg(3R80 \mathbb{R} , Ottobock \mathbb{R}) with bilateral transfemoral amputation due to a industrial accident in september 2014. In this study, we compared the gait abilities with 3R80 \mathbb{R} and power leg \mathbb{R} for one patient who has bilateral femoral amputation. The 3R80 \mathbb{R} is rotary hydraulic, Power leg \mathbb{R} is a new Electronic artificial leg that recognizes bio-signals and walking intention through equipped sensor. He walked for 5 minutes at 1.5km/h after wearing each artificial leg. They were evaluated by using the foot pressure analyzer in the form of a treadmill(Zebris FDM \mathbb{R} ; Zebris Medical GmbH \mathbb{R} , Germany) and respiratory gas analyzer(Cosmed K4B2 \mathbb{R} , Italy).

Results

The analysis of gait abilities showed that the power leg \mathbb{R} had more symmetrical gait in the items of ankle rotation, step length, stance, double stance, and butterfly paragram between both limbs than the 3R80 \mathbb{R} (Table 1, Figure 1). The energy consumption analysis showed that the power leg \mathbb{R} was superior in VO2/kg(oxygen consumption), VCO2/kg(carbon dioxide emission) and HR(heart rate) than the 3R80 \mathbb{R} (Table 2).

Conclusion

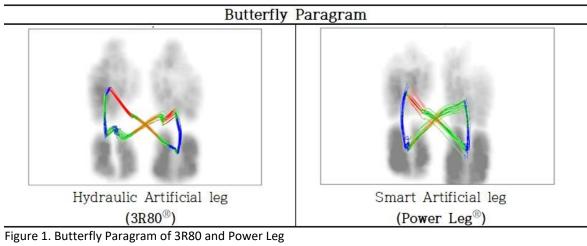

In this study, we analyzed the gait abilities between 3R80 mad power leg \mathbb{R} . We measured the foot pressure and energy consumption with each artificial leg. This Result showed power leg \mathbb{R} is more symmetrical and superior in energy consumption than 3R80. We expect that this Result will be used as a data for the improvement of the artificial leg.

Table 1. Foot Pressure	analysis of 3R80 and Power Leg
------------------------	--------------------------------

	Hydraulic artificial leg (3R80 [®])		Smart artificial leg (Power Leg [®])		
	Lt.	Rt.	Lt.	Rt.	
Foot rotation, (degree)	-1.6 ± 0.9	5.4 ± 0.9	-0.1 ± 0.9	1.9 ± 0.8	
Stride length, (cm)	77 ± 2		84 ± 2		
Step length, (cm)	31 ± 2	45 ± 1	39 ± 1	45 ± 1	
Step width, (cm)	28	28 ± 1		27 ± 1	
Stance phase, (%)	69.1±0.8	72.2 ± 0.5	68.4±2.0	67.9 ± 1.4	
Load response, (%)	22.7±0.6	18.6 ± 0.7	19.3±0.6	16.9 ± 2.4	
Mid stance, (%)	27.8 ± 0.6	30.9±0.8	32.0±1.3	31.7±2.2	
Pre-Swing, (%)	18.6 ± 0.7	22.7 ± 0.7	17.0±2.4	19.4±0.7	
Swing phase, (%)	30.9 ± 0.8	27.8 ± 0.5	31.6±2.0	32.1±1.4	
Double stance phase, (%)	41.3	±1.0	36.3	±2.4	

Table 2. Energy Consumption of 3R80 and Power Leg

	Rest	3R80 [®]	Power Leg [®]	Reduction ratio
VO ₂ /Kg (ml/kg/min)	4.6	17.3	16.1	- 7%
VCO ₂ /Kg (l/min)	5.4	16.7	14.6	- 13%
HR (BPM)	92.4	127.9	121.3	- 5%

