P 2-32

Wearable Hip-Assist Robot Reduces Muscle Fatigue and Metabolic Energy Cost in Elderly Persons

Hwang-Jae Lee^{1,2*}, Su-Hyun Lee¹, Won Hyuk Chang¹, Byung-Ok Choi³, Gyu-Ha Ryu⁴, Yun-Hee Kim^{1,2†}

Samsung Medical Center, Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute¹, Sungkyunkwan University, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST)², Samsung Medical Center, Department of Neurology, Neuroscience Center³, Samsung Medical Center, Office of Biomechanical science, Research Center for Future Medicine⁴

Objective

The purpose of the present study was to investigate the effect of newly developed wearable hip-assist robot on muscle fatigue and cardiopulmonary metabolic energy cost during walking in elderly persons.

Methods

Twenty elderly persons (age means: 71.5 ± 3.71, 11 males) participated in this study. The Gait Enhancing Mechatronic System version 3.0 (GEMS V3, Samsung Electronics Co., Ltd., Korea), which functions as a wearable hip-assist robot was used in this experiment. All participations performed randomly assigned three conditions (free gait without robot assistance [FG], robot-assist gait with zero torque [RAG-Z] and robot-assist gait [RAG]) of treadmill walking during 6 min at self-selected speed. In all conditions, muscle fatigue were acquired and analyzed using the 12-channel wireless surface electromyography system (Desktop DTS system, Noraxon, USA) and cardiopulmonary metabolic energy cost (ml·kg-1·min-1) were obtained from portable cardiopulmonary metabolic system (COSMED K4B2, Rome, IT).

Results

The RAG condition demonstrated lesser lower extremity muscle fatigue during 6 minutes treadmill walking than the FG and RAG-Z. Furthermore, net cardiopulmonary metabolic energy cost during 6 minutes treadmill walking was significantly lower in the RAG (decreased of 33.14% than FA) than the FA and RAG-Z (P <0.05) (Figure 1).

Conclusion

These results demonstrate that a newly developed wearable hip assist robot, the GEMS V3, is a potentially useful device for improving gait function by reducing the muscle fatigue and also by decreasing cardiopulmonary metabolic cost during walking in elderly persons. We will perform a study to confirm the effect of gait training effect of GEMS V3 with neural disorder patients in the near future.

Acknowledgment

This study was supported by the Samsung Medical Center (PHO018019) and by a grant from the NRF (NRF-2016R1A6A3A11930931 and NRF-2017M3A9G5083690), which is funded by the Korean government

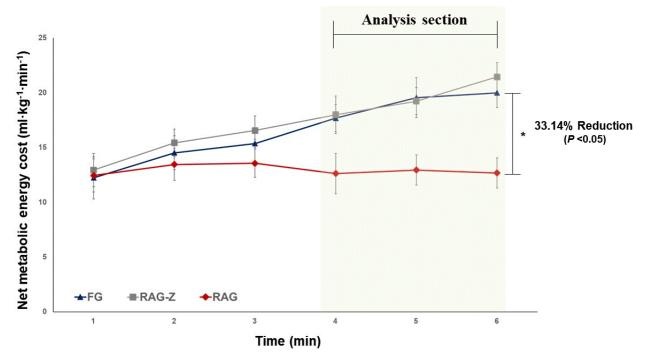


Fig 1. Trajectory of change in Net metabolic energy consumption with 3 conditions (FG vs. RAG-Z vs. RAG). FG: free gait without robot assistance, RAG-Z: robot-assist gait with zero torque, RAG: robot-assist gait